
Static Single Assignment Form 



Many compilers use a form of intermediate code 
called "Static Single Assignment" or SSA.  This was  
developed by Ron Cytron and  others at IBM in the 
1980's. Cytron  is now a professor at Washington U. 
in St. Louis. 
 
SSA is used by gcc (at least gcc v.4 about 10 years 
ago) and by some versions of the Java VM. 



With SSA we translate the code so that there are 
multiple versions of each variable.  Each version can 
be assigned to only once.  This means that when we 
see a variable we know it can never be changed, so 
we can rearrange the code without changing the 
value of any variable.  This greatly facilitates many 
optimizations. 



For example, consider the code 

x = 0 
x = 5 
y = x+1 
z = (x+1)*5 
if (x < 10) 
    print( "Hi, Mom!") 
 
 

SSA would write this: 
x1=0 
x2=5 
y1=x2+1 
z1=(x2+1)*5 
if (x2<10) 
    print( "Hi, Mom!") 



x1=0 
x2=5 
y1=x2+1 
z1=(x2+1)*5 
if (x2<10) 
    print( "Hi, Mom!") 
 

Now we can start analyzing this.  The assignment 
to x1 is pointless since x1 never appears again. 
This can be eliminated.  The two x2+1 expressions 
must have the same value, since x2 can never be 
assigned to.   



x2=5 
y1=x2+1 
z1=(x2+1)*5 
if (x2<10) 
    print( "Hi, Mom!") 
 

Even better, since x2 is assigned a constant, we know 
at compile time the values of y1 and z1. This reduces 
the program to 
 x2=5 
 y1=6 
 z1=30 
 print( "Hi, Mom!") 



We have to be careful with 
branches.  Consider 
 x=input() 
 x=x-1 
 if (x<3) { 
  y=2*x 
  w=y 
 } 
 else 
  y=x-3 
 w=x-y 
 z=x+y 

x1=input( ) 
x2=x1-1 

x2 < 3 

y1=2*x2 

w1=y1 

y2=x2-3 

y3 = f(y1,y2) 
w2=x2-y3 

z1=x2+y3 



x1=input( ) 
x2=x1-1 

x2 < 3 

y1=2*x2 

w1=y1 

y2=x2-3 

y3 = f(y1,y2) 
w2=x2-y3 

z1=x2+y3 

Notice the line  
    y3 = f(y1,y2) 
It is necessary to bring 
the two branches of 
the if-statement 
together.   Initially f 

was thought of as a 
crystal ball that would 
magically know which 
branch the execution 
took. 



Eventually the researchers realized that no magic 
was needed. f(y1,y2) can be thought of as a 
directive to the code generator to assign y1 and y2 
to the same register or memory location.  That way 
the execution can continue without knowing which 
branch of the if the execution took. 
 
 
But where do we need f-functions?  And what do 
we do about loops?  The answers rely on the notion 
of dominance. 



• In a flow graph, we say node A dominates node 
B if every path from the start to B passes 
through A. 

• We say A immediately dominates B if A 
dominates B and every dominator of B 
dominates A,  For example, in this graph B 
immediately dominates E: 
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Note that if A dominates B and B dominates A, then 
A and B must be the same node.  We can find a 
path from start to B passing through A. If A is not B 
the portion of this path from start to A doesn't pass 
through B, contradicting the requirement that B 
dominates A.  
 
So immediate dominators are unique (otherwise 
two immediate dominators would have to 
dominate each other). 



Here is an algorithm for finding the  immediate 
dominator of any node B:  Consider any path from 
the start to B.  Let A1...An be the dominators of B on 
this path, enumerated in the order they appear on 
this path.  I claim that An must be an immediate 
dominator of B. 
 
To see this, suppose An does not immediately 
dominate B.  Then there must be a node A that 
dominates B but not An.  This means there is a path 
from start to An not passing through A. Since An 
dominates B, this path can be extended to a path 
from start to B not passing through A, contradicting 
the assumption that A dominates B. 



In other words, to find the immediate dominator of 
any node B, find a path from the start to B. The last 
dominator of B on this path is its immediate 
dominator. 
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The dominator tree of a flow graph has an edge 
from A to B only if A immediately dominates B. This 
forms a tree since if there were two different paths 
connecting node C to node D we would have to 
have multiple immediate dominators of one node. 



Let dom(A) be the set of all nodes in a flowgraph 
that dominate node A. 
 
Note that 

𝑑𝑜𝑚 𝐴 = {𝐴} ∪  𝑑𝑜𝑚(𝐵)
𝐵→𝐴
𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒

𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤𝑔𝑟𝑎𝑝ℎ

 

This just says that a dominator of A must 
dominate all of A's immediate predecessors. 



So here is an algorithm for finding the dominators of 
every node in a flowgraph: 
 
Initially for every node A we make dom(A) be the 
set of all nodes.  Create a worklist containing just 
the start node.  Then 
 while worklist is not empty: 
  Remove a node Y from the worklist 
  Let New be {Y} + intersection of 
   dom(X) for every edge X->Y 
  If New != dom(Y): 
   dom(Y)=New 
   add the successors of Y to the 
    worklist 
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Initially all nodes have dom(X)={Start, A,B,C,D,E,F} 
and Worklist={Start} 
I. Take Start from Worklist. There are no 

incoming edges to Start, so 
dom(Start)={Start}.  Add A to Worklist. 

II. Remove A from Worklist. dom(A)={A}+{Start} 
= {A,Start}. Add B and D to Worklist. 

III. Now Worklist = {B,D}.  Suppose we take D 
from the Worklist.  dom(D)={D}+dom(A) 
={D,A,Start}.  Add E to the Worklist. 

IV. Now Worklist = {B,E}.  Suppose we take E 
from the Worklist.  dom(E)={E}+[dom(C) 
intersect dom(D)]={E,D,A,Start}.  Add F to the 
Worklist. 

V. Worklist is now {B,F} and E doesn't yet have 
its final dom(E) set. 
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At this point Worklist={B,F}, dom(Start)={Start}, 
dom(A)={A,Start}. dom(D)={D,A,Start}, 
dom(E)={E,D,A,Start} and the  other nodes have 
everything in their dom sets. 
V. Take B from the Worklist.  

dom(B)={B}+dom(A)={B,A,Start}.  Add C to 
the Worklist 

VI. Worklist={C,F}. Take C from the worklist.  
dom(C)={C}+dom(B)={C,B,A,Start}.  Add E to 
the worklist again. 

VII. Worklist={E,F}.  If we take F out we get 
dom(F)={F}+dom(E)={F,E,D,A,Start}. F has no 
successors so there is nothing to add. 

VIII. Worklist={E}.  Take E out.  
dom(E)={E}+[dom(C) intersect 
dom(D)]={E,A,Start}.  Add F to the Worklist. 

IX. Finally, dom(F)={F}+dom(E)={F,E,A,Start} and 
we are done. 
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Here are the dominator sets: 

{Start} 

{A,Start} 

{D,A,Start} {B,A,Start} 

{C,B,A,Start} 

{E,A,Start} 

{F,E,A,Start} 



DF(A), the dominance frontier of node A, is {B such 
that A does not dominate B, but either A is an 
immediate predecessor of B or A dominates an 
immediate predecessor of B} 
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DF{A}={} 
DF(B)={E} 
DF(C)={E} 
DF(D)={E} 
DF(E)={}  

E 
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DF(Start)={} 
DF(A)={} 
DF(B)={E} 
DF(C)={E} 
DF(D)={E} 
DF(E)={} 
DF(F)={} 
DF(G)={F} 
DF(H)={F} 
DF(I)={} 
DF(End)={} 



Now back to SSA.  Suppose X is a node in a SSA flow 
graph and some variable p is defined in X.  The 
definition of p is valid in any node that X dominates.  
Now suppose node Z is in the dominance frontier of 
X.  The definition of p is valid in a predecessor of Z 
so it reaches node Z, but since X does not dominate 
Z some alternative definition of p could also reach 
node Z.  We need a f-function in Z to resolve the 
conflicting definitions of p.  
 
In other words, variables defined in node X need f-
functions in the dominance frontier of X.   



x=1 
y=2 

while (x< 5) 

y = 2*y 
x = x+1 

print(y) 

Example 
x = 1 
y = 2 
while (x < 5) { 
 y = 2*y 
 x = x+1 
} 
print(y) 

flow graph 
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x1=1 
y1=2 

x2=f(x1,x3) 
y2=f(y1,y3) 
while (x2< 5) 

y3 = 2*y2 

x3 = x2+1 
print(y2) 

SSA graph 
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We need the f-functions in node B 
because that is the dominance 
frontier  of node C. 


