
Static Single Assignment Form

Many compilers use a form of intermediate code
called "Static Single Assignment" or SSA. This was
developed by Ron Cytron and others at IBM in the
1980's. Cytron is now a professor at Washington U.
in St. Louis.

SSA is used by gcc (at least gcc v.4 about 10 years
ago) and by some versions of the Java VM.

With SSA we translate the code so that there are
multiple versions of each variable. Each version can
be assigned to only once. This means that when we
see a variable we know it can never be changed, so
we can rearrange the code without changing the
value of any variable. This greatly facilitates many
optimizations.

For example, consider the code

x = 0
x = 5
y = x+1
z = (x+1)*5
if (x < 10)
 print("Hi, Mom!")

SSA would write this:
x1=0
x2=5
y1=x2+1
z1=(x2+1)*5
if (x2<10)
 print("Hi, Mom!")

x1=0
x2=5
y1=x2+1
z1=(x2+1)*5
if (x2<10)
 print("Hi, Mom!")

Now we can start analyzing this. The assignment
to x1 is pointless since x1 never appears again.
This can be eliminated. The two x2+1 expressions
must have the same value, since x2 can never be
assigned to.

x2=5
y1=x2+1
z1=(x2+1)*5
if (x2<10)
 print("Hi, Mom!")

Even better, since x2 is assigned a constant, we know
at compile time the values of y1 and z1. This reduces
the program to
 x2=5
 y1=6
 z1=30
 print("Hi, Mom!")

We have to be careful with
branches. Consider
 x=input()
 x=x-1
 if (x<3) {
 y=2*x
 w=y
 }
 else
 y=x-3
 w=x-y
 z=x+y

x1=input()
x2=x1-1

x2 < 3

y1=2*x2

w1=y1

y2=x2-3

y3 = f(y1,y2)
w2=x2-y3

z1=x2+y3

x1=input()
x2=x1-1

x2 < 3

y1=2*x2

w1=y1

y2=x2-3

y3 = f(y1,y2)
w2=x2-y3

z1=x2+y3

Notice the line
 y3 = f(y1,y2)
It is necessary to bring
the two branches of
the if-statement
together. Initially f

was thought of as a
crystal ball that would
magically know which
branch the execution
took.

Eventually the researchers realized that no magic
was needed. f(y1,y2) can be thought of as a
directive to the code generator to assign y1 and y2
to the same register or memory location. That way
the execution can continue without knowing which
branch of the if the execution took.

But where do we need f-functions? And what do
we do about loops? The answers rely on the notion
of dominance.

• In a flow graph, we say node A dominates node
B if every path from the start to B passes
through A.

• We say A immediately dominates B if A
dominates B and every dominator of B
dominates A, For example, in this graph B
immediately dominates E:

A

B

C D

E

Note that if A dominates B and B dominates A, then
A and B must be the same node. We can find a
path from start to B passing through A. If A is not B
the portion of this path from start to A doesn't pass
through B, contradicting the requirement that B
dominates A.

So immediate dominators are unique (otherwise
two immediate dominators would have to
dominate each other).

Here is an algorithm for finding the immediate
dominator of any node B: Consider any path from
the start to B. Let A1...An be the dominators of B on
this path, enumerated in the order they appear on
this path. I claim that An must be an immediate
dominator of B.

To see this, suppose An does not immediately
dominate B. Then there must be a node A that
dominates B but not An. This means there is a path
from start to An not passing through A. Since An
dominates B, this path can be extended to a path
from start to B not passing through A, contradicting
the assumption that A dominates B.

In other words, to find the immediate dominator of
any node B, find a path from the start to B. The last
dominator of B on this path is its immediate
dominator.

Start

End

A

B

C

D

E

F

G
I

Start

End

A

B

C

D E

F

G

H

H

I

Flow Graph

Dominator
Tree

The dominator tree of a flow graph has an edge
from A to B only if A immediately dominates B. This
forms a tree since if there were two different paths
connecting node C to node D we would have to
have multiple immediate dominators of one node.

Let dom(A) be the set of all nodes in a flowgraph
that dominate node A.

Note that

𝑑𝑜𝑚 𝐴 = {𝐴} ∪ 𝑑𝑜𝑚(𝐵)
𝐵→𝐴
𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒

𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤𝑔𝑟𝑎𝑝ℎ

This just says that a dominator of A must
dominate all of A's immediate predecessors.

So here is an algorithm for finding the dominators of
every node in a flowgraph:

Initially for every node A we make dom(A) be the
set of all nodes. Create a worklist containing just
the start node. Then
 while worklist is not empty:
 Remove a node Y from the worklist
 Let New be {Y} + intersection of
 dom(X) for every edge X->Y
 If New != dom(Y):
 dom(Y)=New
 add the successors of Y to the
 worklist

Start

A

B D

E

F

C

Initially all nodes have dom(X)={Start, A,B,C,D,E,F}
and Worklist={Start}
I. Take Start from Worklist. There are no

incoming edges to Start, so
dom(Start)={Start}. Add A to Worklist.

II. Remove A from Worklist. dom(A)={A}+{Start}
= {A,Start}. Add B and D to Worklist.

III. Now Worklist = {B,D}. Suppose we take D
from the Worklist. dom(D)={D}+dom(A)
={D,A,Start}. Add E to the Worklist.

IV. Now Worklist = {B,E}. Suppose we take E
from the Worklist. dom(E)={E}+[dom(C)
intersect dom(D)]={E,D,A,Start}. Add F to the
Worklist.

V. Worklist is now {B,F} and E doesn't yet have
its final dom(E) set.

Start

A

B D

E

F

C

At this point Worklist={B,F}, dom(Start)={Start},
dom(A)={A,Start}. dom(D)={D,A,Start},
dom(E)={E,D,A,Start} and the other nodes have
everything in their dom sets.
V. Take B from the Worklist.

dom(B)={B}+dom(A)={B,A,Start}. Add C to
the Worklist

VI. Worklist={C,F}. Take C from the worklist.
dom(C)={C}+dom(B)={C,B,A,Start}. Add E to
the worklist again.

VII. Worklist={E,F}. If we take F out we get
dom(F)={F}+dom(E)={F,E,D,A,Start}. F has no
successors so there is nothing to add.

VIII. Worklist={E}. Take E out.
dom(E)={E}+[dom(C) intersect
dom(D)]={E,A,Start}. Add F to the Worklist.

IX. Finally, dom(F)={F}+dom(E)={F,E,A,Start} and
we are done.

Start

A

B D

E

F

C

Here are the dominator sets:

{Start}

{A,Start}

{D,A,Start} {B,A,Start}

{C,B,A,Start}

{E,A,Start}

{F,E,A,Start}

DF(A), the dominance frontier of node A, is {B such
that A does not dominate B, but either A is an
immediate predecessor of B or A dominates an
immediate predecessor of B}

A

B D

C

DF{A}={}
DF(B)={E}
DF(C)={E}
DF(D)={E}
DF(E)={}

E

Start

End

A

B

C

D

E

F

G
I

H

DF(Start)={}
DF(A)={}
DF(B)={E}
DF(C)={E}
DF(D)={E}
DF(E)={}
DF(F)={}
DF(G)={F}
DF(H)={F}
DF(I)={}
DF(End)={}

Now back to SSA. Suppose X is a node in a SSA flow
graph and some variable p is defined in X. The
definition of p is valid in any node that X dominates.
Now suppose node Z is in the dominance frontier of
X. The definition of p is valid in a predecessor of Z
so it reaches node Z, but since X does not dominate
Z some alternative definition of p could also reach
node Z. We need a f-function in Z to resolve the
conflicting definitions of p.

In other words, variables defined in node X need f-
functions in the dominance frontier of X.

x=1
y=2

while (x< 5)

y = 2*y
x = x+1

print(y)

Example
x = 1
y = 2
while (x < 5) {
 y = 2*y
 x = x+1
}
print(y)

flow graph

A

B

C D

x1=1
y1=2

x2=f(x1,x3)
y2=f(y1,y3)
while (x2< 5)

y3 = 2*y2

x3 = x2+1
print(y2)

SSA graph
A

B

C D

We need the f-functions in node B
because that is the dominance
frontier of node C.

